If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-96x+139=0
a = 16; b = -96; c = +139;
Δ = b2-4ac
Δ = -962-4·16·139
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-8\sqrt{5}}{2*16}=\frac{96-8\sqrt{5}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+8\sqrt{5}}{2*16}=\frac{96+8\sqrt{5}}{32} $
| 81/9,2=x | | 2e+(e+3)=-11 | | 2e+(e+3=-11 | | x2+3x-81=0 | | x2+8x–384=0 | | x²+21x+98=0 | | 9+4x=-15x= | | 93/k=3 | | 5f+14=34 | | 6e-16=32 | | (x-1)/x=x/(3x-5) | | 3z+11=415z+11=41 | | y⁴-15y²=0 | | 4*x^2+17*x-15=0 | | ⁶x/3=12 | | (4x+6)=6x-1 | | 2×5^x(+1)-250=0 | | 10r=6=49 | | -2x2+20x-18=24 | | X²+8x=-25 | | 7(4x-12)=6 | | 2×y=50 | | x-67=29 | | 3–x=38 | | 60Xx=100 | | k²+2k-5=0 | | 2y2+8y=10 | | 12/y+5=7 | | (s+2/2s)-(s+2/4)=-1/2 | | x-52=2x+1 | | 6-4x=x-9 | | 5x+13=2+6x |